Authors
Engelken R
Journal
Arxiv
Citation
arXiv:2312.17216.
Abstract
Spiking Neural Networks (SNNs) are biologically-inspired models that are capable of processing information in streams of action potentials. However, simulating and training SNNs is computationally expensive due to the need to solve large systems of coupled differential equations. In this paper, we introduce SparseProp, a novel event-based algorithm for simulating and training sparse SNNs. Our algorithm reduces the computational cost of both the forward and backward pass operations from O(N) to O(log(N)) per network spike, thereby enabling numerically exact simulations of large spiking networks and their efficient training using backpropagation through time. By leveraging the sparsity of the network, SparseProp eliminates the need to iterate through all neurons at each spike, employing efficient state updates instead. We demonstrate the efficacy of SparseProp across several classical integrate-and-fire neuron models, including a simulation of a sparse SNN with one million LIF neurons. This results in a speed-up exceeding four orders of magnitude relative to previous event-based implementations. Our work provides an efficient and exact solution for training large-scale spiking neural networks and opens up new possibilities for building more sophisticated brain-inspired models.