Mechanisms and disease relevance of mitochondrial translation in humans

Authors

Richter-Dennerlein R, Dopico XC, Rorbach J

Journal

Nature Reviews. Molecular Cell Biology

Citation

Nat Rev Mol Cell Biol. 2026 Feb 13.

Abstract

Human mitochondrial ribosomes (mitoribosomes) synthesize the 13 mitochondrial-encoded proteins of the oxidative phosphorylation machinery in a coordinated manner, ensuring proper folding of nascent peptides into the inner mitochondrial membrane and their dynamic assembly with nuclear-encoded oxidative phosphorylation components. Our understanding of mitochondrial translation is rapidly advancing, and in this Review, we discuss recent studies that reveal the intricate regulation of mitochondrial translation initiation, elongation and termination, ribosome biogenesis, redox sensing, mitochondrial mRNA maturation, and quality control mechanisms such as mitoribosome rescue. High-resolution structural studies, mitoribosome profiling and other innovative methodologies provide comprehensive insights into these regulatory networks. We also discuss pathological consequences of mitochondrial translation dysfunction, particularly antibiotic-induced ribosome stalling, which can have severe side effects in some individuals and therapeutic benefits in others. Relatedly, we discuss the emerging roles and clinical relevance of mitochondrial protein synthesis in cancer and immunity. Finally, we outline future directions in the field, including in vitro reconstitution of mitochondrial translation, gene editing in mitochondrial DNA and therapeutic applications.

DOI

10.1038/s41580-026-00948-2
 
Pubmed Link