Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide

Authors

Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, Deglasse JP, Tiburcy M, Chow PH, Jonas JC, Gilon P, Steinhorn B, Michel T, Beauloye C, Bertrand L, Farah C, Dei Zotti F, Debaix H, Bouzin C, Brusa D, Horman S, Vanoverschelde JL, Bergmann O, Gilis D, Rooman M, Ghigo A, Geninatti-Crich S, Yool A, Zimmermann WH, Roderick HL, Devuyst O, Balligand JL

Journal

Science Translational Medicine

Citation

Sci Transl Med. 2020 Oct 7;12(564):eaay2176.

Abstract

Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporinwater channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane trans-port of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Struc-tural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2. Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell–derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.

DOI

10.1126/scitranslmed.aay2176

Pubmed Link