Publications

Home >> Research >> Publications


Impact Factor


August 2025
BioRxiv
Voorn RA, Sternbach M, Bourien J, Komiyama N, Rankovic V, Wolf F, Grant SGN, Vogl C
August 2025
BioRxiv
Kumar NH, Kluever V, Kaufmann SV, Bergmann C, Mousaei K, Tomas M, Marrero MC, Chopra A, Hirose M, Pallas M, Sanfeliu C, Ibrahim SM, Fischer A, Outeiro TF, Urlaub H, Tchumatchenko T, Lopez Otin C, Fornasiero EF
August 2025
Organic & Biomolecular Chemistry
Cacciarini M, Woolley GA, Szymanski W, Simeth NA
August 2025
Angewandte Chemie (International ed. in Engl.)
Wang DX, Gallea JI, Kong DM, Enderlein J, Chen T
August 2025
Biophysical Journal
Vos BE, Vadapalli Y, Muenker TM, Astad Jentoft IM, Todisco E, Eskandari MA, Schuh M, Lenart P, Betz T
August 2025
Nucleic Acids Research
Welp LM, Wulf A, Chernev A, Horokhovskyi Y, Moshkovskii S, Dybkov O, Neumann P, Pašen M, Siraj A, Raabe M, Göthert H, Walshe JL, Infante DA, de A P Schwarzer AC, Dickmanns A, Johannsson S, Schmitzová J, Wohlgemuth I, Netz E, He Y, Fritzemeier K, Delanghe B, Viner R, Vos SM, Oberbeckmann E, Bohnsack KE, Bohnsack MT, Cramer P, Ficner R, Kohlbacher O, Liepe J, Sachsenberg T, Urlaub H
August 2025
Zentralblatt für Chirurgie
Riebeling J, Patejdl R, Zipf D, Conradi LC, Ghadimi M, Gundling F, Bruegmann T.
August 2025
Nature
Frosch M, Shimizu T, Wogram E, Amann L, Gruber L, Groisman AI, Fliegauf M, Schwabenland M, Chhatbar C, Zechel S, Rosewich H, Gärtner J, Quintana FJ, Buescher JM, Blank T, Binder H, Stadelmann C, Letzkus JJ, Hopf C, Masuda T, Knobeloch KP, Prinz M
August 2025
BioRxiv
Szöllősi D, Pratihar S, Mukhopadhyay D, Rout AK, Reddy GJ, Ebersberger N, Becker S, Nagy G, Rauscher S, Lee D, Klement R, Griesinger C, Grubmüller H
August 2025
Arxiv
Hundrieser S, Manole T, Litskevich D, Munk A

Authors

Hundrieser S, Manole T, Litskevich D, Munk A

Journal

Arxiv

Citation

arXiv:2508.00824.

Abstract

We analyze the statistical problem of recovering an atomic signal, modeled as a discrete uniform distribution μ, from a binned Poisson convolution model. This question is motivated, among others, by super-resolution laser microscopy applications, where precise estimation of μ provides insights into spatial formations of cellular protein assemblies. Our main results quantify the local minimax risk of estimating μ for a broad class of smooth convolution kernels. This local perspective enables us to sharply quantify optimal estimation rates as a function of the clustering structure of the underlying signal. Moreover, our results are expressed under a multiscale loss function, which reveals that different parts of the underlying signal can be recovered at different rates depending on their local geometry. Overall, these results paint an optimistic perspective on the Poisson deconvolution problem, showing that accurate recovery is achievable under a much broader class of signals than suggested by existing global minimax analyses. Beyond Poisson deconvolution, our results also allow us to establish the local minimax rate of parameter estimation in Gaussian mixture models with uniform weights.
We apply our methods to experimental super-resolution microscopy data to identify the location and configuration of individual DNA origamis. In addition, we complement our findings with numerical experiments on runtime and statistical recovery that showcase the practical performance of our estimators and their trade-offs.

DOI

10.48550/arXiv.2508.00824

 

X
EN DE
X
X