Publikationen

Home >> Forschung >> Publikationen


Impact Factor


Januar 2026
BioRxiv
Gallea JI, Karedla N, Wang D, Zhao B, Chen L, Enderlein J, Chen T
Januar 2026
BioRxiv
Haertter D, Hauke L, Driehorst T, Nish Ki, Zimmermann W, Schmidt CF
Januar 2026
Nano Letters
Marx D, Gligonov I, Malsbenden D, Wöll D, Nevskyi O, Enderlein J.
Januar 2026
Biophysical Journal
Häring M, Zhang Y, Zhang N, Allgeyer ES, Richens JH, Sirinakis G, Lv Z, St Johnston D, Wolf F, Großhans J, Kong D
Januar 2026
eLife
Kapoor R, Do TT, Schwenzer N, Petrovic A, Dresbach T, Lehnart SE, Fernández-Busnadiego R, Moser T
Januar 2026
Nature Communications
Haydar S, Bednarz R, Laurette P, Sobitov I, Díaz I Pedrosa N, Videm P, Lueneburg T, Kuß S, Lahm H, Dreßen M, Krane M, Schmidt C, Grüning BA, Voigt N, Streckfuss-Bömeke K, Gilsbach R
Januar 2026
American Journal of Human Genetics
Di Donato N; NMA Consortium; Thom A, Rump A, Greve JN, Cadiñanos J, Calabro S, Cathey S, Chung B, Cope H, Costales M, Cuvertino S, Dinkel P, Erripi K, Fry AE, Garavelli L, Hoffjan S, Janzarik WG, Kreimer I, Mancini G, Marin-Reina P, Meinhardt A, Niehaus I, Pilz D, Ricca I, Simarro FS, Schrock E, Marquardt A, Taft MH, Tezcan K, Thunström S, Verhagen J, Verloes A, Wollnik B, Krawitz P, Hsieh TC, Seifert M, Heide M, Lawrence CB, Roberts NA, Manstein DJ, Woolf AS, Banka S
Januar 2026
BioRxiv
Schuh M, Saha D, Manshaei S, Cavazza T, Holubcova S, Maierova B, Zielinska AP, Wartosch L, Blaney M, Elder K
Januar 2026
Glia
Hümmert S, de Faria JP, Jahn O, Bilgin E, Łukasik N, Rao C, Mitkovski M, Benseler F, Brose N, Siems SB, Goebbels S, Möbius W, Ewers H, Relvas JB, Werner HB
Januar 2026
Journal of Computational and Graphical Statistics
Mösching A, Li H, Munk A

Authors

Mösching A, Li H, Munk A

Journal

Journal of Computational and Graphical Statistics

Citation

Journal of Computational and Graphical Statistics, 1–15.

Abstract

Hidden Markov models (HMMs) are characterized by an unobservable Markov chain and an observable process—a noisy version of the hidden chain. Decoding the original signal from the noisy observations is one of the main goals in nearly all HMM based data analyses. Existing decoding algorithms such as Viterbi and the pointwise maximum a posteriori (PMAP) algorithm have computational complexity at best linear in the length of the observed sequence, and sub-quadratic in the size of the state space of the hidden chain. We present Quick Adaptive Ternary Segmentation (QATS), a divide-and-conquer procedure with computational complexity polylogarithmic in the length of the sequence, and cubic in the size of the state space, hence, particularly suited for large scale HMMs with relatively few states. It also suggests an effective way of data storage as specific cumulative sums. In essence, the estimated sequence of states sequentially maximizes local likelihood scores among all local paths with at most three segments, and is meanwhile admissible. The maximization is performed only approximately using an adaptive search procedure. Our simulations demonstrate the speedups offered by QATS in comparison to Viterbi and PMAP, along with a precision analysis. An implementation of QATS is in the R-package QATS on GitHub. Supplementary materials for this article are available online.

DOI

10.1080/10618600.2025.2572328
 

X

Open Positions

EN DE
X
X