Publications

Home >> Research >> Publications


Impact Factor


July 2025
Biophysical Journal
Jurado A, Isensee J, Hofemeier A, Krüger LJ, Wittkowski R, Golestanian R, Bittihn P, Betz T
July 2025
NPJ Parkinsons Disease
Yalçin M, Grande V, Outeiro TF, Relόgio A
July 2025
Nature Communications
Chouaib AA, Chang HF, Khamis OM, Alawar N, Echeverry S, Demeersseman L, Elizarova S, Daniel JA, Tian Q, Lipp P, Fornasiero EF, Valitutti S, Barg S, Pape C, Shaib AH, Becherer U
July 2025
Science Advances
Kiszka KA, Dullin C, Steffens H, Koenen T, Rothermel E, Alves F, Gregor C
July 2025
Nature Communications
Stoldt S, Maass F, Weber M, Dennerlein S, Ilgen P, Gaertner J, Canfes A, Schweighofer SV, Jans DC, Rehling P, Jakobs S
July 2025
BioRxiv
Amin F, Stone JT, König C, Mancini N, Murakami K, Bidaye SS, Heim MM, Owald D, Majumder U, Grunwald Kadow IC, Pierzchlińska A, Litwin-Kumar A, Barnstedt O, Gerber B
July 2025
Acta Crystallographica Section F-Structural Biology Communications
Kloskowski P, Neumann P, Berndt A, Ficner R
July 2025
Nature Biomedical Engineering
Alekseev A, Hunniford V, Zerche M, Jeschke, M, El May F, Vavakou A, Siegenthaler D, Hueser MA, Kiehn SM, Garrido-Charles A, Meyer A, Rambousky A, Alvanos T, Witzke I, Rojas-Garcia KD, Draband M, Cyganek L, Klein E, Ruther P, Huet A, Trenholm S, Macé E, Kusch K, Bruegmann T, Wolf BJ, Mager T, Moser T
July 2025
Structure
Kovalev K, Stetsenko A, Trunk F, Marin E, Haro-Moreno JM, Lamm GHU, Alekseev A, Rodriguez-Valera F, Schneider TR, Wachtveitl J, Guskov A
July 2025
Nucleic Acids Research
Antonicka H, Vučković A, Weraarpachai W, Hong S, Brischigliaro M, Ahn A, Barrientos A, Hillen HS, Shoubridge EA

Authors

Antonicka H, Vučković A, Weraarpachai W, Hong S, Brischigliaro M, Ahn A, Barrientos A, Hillen HS, Shoubridge EA

Journal

Nucleic Acids Research

Citation

Nucleic Acids Res. 2025 Jul 8;53(13):gkaf665.

Abstract

The first post-transcriptional step in mammalian mitochondrial gene expression, required for the synthesis of the 13 polypeptides encoded in mitochondrial DNA (mtDNA), is endonucleolytic cleavage of the primary polycistronic transcripts. Excision of the mtDNA-encoded transfer RNAs (tRNAs) releases most mature RNAs; however, processing of three noncanonical messenger RNAs (mRNAs) not flanked by tRNAs (CO1, CO3, and CYB) requires FASTKD5. To investigate the molecular mechanism involved, we created knockout human cell lines to use as assay systems. The absence of FASTKD5 produced a severe OXPHOS assembly defect due to the inability to translate two unprocessed noncanonical mRNAs and predicted altered folding patterns specifically at the 5′-end of the CO1 coding sequence. Structural features 13-15 nt upstream of the CO1 and CYB cleavage sites suggest FASTKD5 recognition mechanisms. Remarkably, a map of essential FASTKD5 amino acid residues revealed RNA substrate specificity; however, a key, putative active site residue was required for processing all three noncanonical pre-RNAs. Mutating this site did not significantly alter the binding of any client RNA substrate. A reconstituted in vitro system showed that wild-type, but not mutant, FASTKD5, was able to cleave client substrates correctly. These results establish FASTKD5 as the missing piece of biochemical machinery required to completely process the primary mitochondrial transcript.

DOI

10.1093/nar/gkaf665
 
Pubmed Link

X
EN DE
X
X