Authors
Bögershausen N, Krawczyk HE, Jamra RA, Lin SJ, Yigit G, Hüning I, Polo AM, Vona B, Huang K, Schmidt J, Altmüller J, Luppe J, Platzer K, Dörgeloh BB, Busche A, Biskup S, Mendes MI, Smith DEC, Salomons GS, Zibat A, Bültmann E, Nürnberg P, Spielmann M, Lemke JR, Li Y, Zenker M, Varshney GK, Hillen HS, Kratz CP, Wollnik B
Journal
Human Mutation
Citation
Sci Rep. 2022 Mar 8;12(1):4091.
Abstract
Aminoacylation of tRNA is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARS). ARS have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme’s active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: aminoacyl-tRNA synthetase-related developmental disorders with or without microcephaly. This article is protected by copyright. All rights reserved.
DOI
10.1002/humu.24430
Pubmed Link